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ABSTRACT

N
Let @ be a bounded smooth domain in R . We give an estimate for the

number of solutions of the problem

Lu + g{u) =Au in g, ulan =0
where L 18 a second order elliptic operator. The behavior of the
nonlinearity g both at 0 and at *® and the relationship between A and

the spectrum of L play an important role in the analysis.
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te il
. SIGNIFICANCE AND EXPLANATION
. ". Lot
“ In this paper we concider,,\the number of solutions of the Dirichlet
: o o
/\f .« 7 L.
problem for semilinear elliptic equations. Specifically we-study the gquestion
4T limbas

of finding solutions u of an equation such as =~fu + g(u) = Au in a bounded
domain '?‘C l“ ';;L;;ct to the condition that u vanishes on the boundary of
9: This problem has been intensively studied in the last few years; it
arises in many situations such as nonlinear diffusion generated by nonlinear
sources, the thermal ignition of gases, and othern.jiin,tﬁis paper v;’derivei
precise estimates of the number of solutions under assumptions which are

natural for these problems thereby complementing results obtained by a number

of authors.
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A MULTIPLICITY RESULT FOR A SEMILINEAR DIRICHLET PROBLEM :j

J. V. A. Goncalves* .?

2

1.  Introduction ,;1:
Let & be a bounded smooth domain in R'. We are concerned with the ;;i?
question of existence of multiple solutions for the problem :;—‘.

(1) Lu + g(u) = Au in Q, ulan =0 R

where g: R+ R is a locally Lipschitz continuous function, A is a real

parameter and

Lu = - g 2 (a 33-) + a

u
1,9=1 axj i3 axi 0
has smooth real valued coefficient functions aij = aji and ao >0
satisfying the ellipticity condition
N N
I ag g > el 2 xeq, (5.5 € R
i,3=1 i=1

for some postive constant c. Let 0 < x1 < xz € oo € Aj € «¢s be the

sequence of eigenvalues of the linear problem
= )\ =
Lu u in Q, ula‘z 0

with each Aj occurring in the sequence as often as its multiplicity. We
recall that the corresponding sequence of eigenfunctions Fqe ¢2,--~'vj.---
1

2
is a complete orthonormal system of L () with ¢1 >0 4in Q and ;;l <0

: * Universidade de Brasilia. Partially supported by CNPg/Brasil.

- Sponsored by the U.S. Army under Contract No. DAAG29-80-C-0041.
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on 3N where n(x) is the outward pointing normal to 3fl. Our goal in this

paper is to prove the following result.

Theorem 1. Assume g: R+ R is a locally Lipschitz continuous function

satisfying

(g4) g(z) =o(lz]) at z =0 i;j
(92) ﬂi.!.,“ as lz| » =

and ~>£
(93) 0< Glz) = ]: glt)dt < % zgl{z), z € R. _—

Then (1) has at least four solutions provided 1\ > Az.

Theorem 1 is an improvement to an earlier result by Struwe ([S] where a

condition stronger than (93). namely
(95) gigl is increasing in (0, +») and is decreasing in (-=, 0)

is assumed. As a matter of fact, by requiring more regularity on g, namely

1
geCc (R), Ambrosetti (6] proved as an application of the Morse Theory that

at least 3 nontrivial solutions of (1) do exist provided A > Az and

j7 (g4) - (g;) hold. Also for g e C'(R) it was shown by Hofer (7] that (1)

;' has at least 4 montrivial solutions if (g,) - (g;) hold and Ae (Ai, A1+1)'
FI i > 2. We recall that more precise results are known both in the O.D.E. case

(see Berestycki [11] and references therein) and in the case that g 1is odd

I )

e RO ) ] T
PP A
I DRI I T

(see Rabinowitz [4) where the technique used to prove Th. 2.8 applies to
(1)). We refer the reader to [1], (3], [9], [10] for additional results

concerning (1).
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Remarks.
(1)  Theorem 1 holds if (g,) is replaced by the weaker condition E
{

(qi) there exist numbers z_ < 0 < z, such that

Xz_ -glg ) =0 = Xz+ - q(z+).

‘l.l KA

UL Py

(11) If we assume (g') in Th. 1 then it can be shown that (1) has exactly a
3

positive solution and a negative one. Moreover (1) has a maximal

ik Kiiiele o

solution and a minimal solution (see e.g. the Lecture Notes by

deFigueiredo ([10]).

(111) Dependence of g on x @€Q 1is allowed by modifying conveniently our : J

g assumptions, for example, by requiring the limits (gq) - (92) to be ifi
L uniform with respect to x e Q. %
b (iv) If =2g(z) > 0 for z* 0, then it follows easily that (1) admits only L
.

the trivial solution for X < ) 9"

The author is grateful to Professor P. H. Rabinowitz for his help.
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2. Notations and Preliminary Results

1
We introduce in the Sobolev space H = Ho(n) the inner product

du_3v
(u,v), : 321 é (.13 35: 3;; + aouv)dx

= B(u,v) + | ajuvdx u, v € H.
Q

Let Iulf = (u, u)1 for u e H be the corresponding norm which is equivalent

to the usual norm of H. We denote by (',')o the inner product in Lz(n)

and by I°|o the corresponding norm and recall that (v, v)1 < Aj(v.v)o for
= eoe b
ve vj where Vj span {¢1. .wj} and (w;v)1 Xj+1(w.W)° for w e wj
= evef e H= v
where wj span {¢1*1, }. Moreover vj ® wj and § is orthogonal

2 and H inner products. We denote by

to Wj both with respect to the L
Pj and Qj the projectors onto vj and wj respectively.

Next we will associate to (1) an auxiliary problem. Let

z+-sup{z>o;xt-g(t)>o, 0 ¢t ¢z}
and

z =4inf {2 < 0; At - g(t) <0, 2z < ¢t <O},

It follows from (gy) = (g;) that —= < z_<0 <z < +=. Instead of

working directly with (1) we are going to look for solutions of

(1') Lu = £(u) in Q, uIan =0

where f: R+ R 1is the bounded function (f is Lipschitz continuous if g is
locally Lipschitz continuous) defined by f(z) = \z - glzg) 1if g_< g« z,

and f(z) = 0 otherwige.




Lemma 1. let g: R+ R be a continuous function satisfying (g,). If 1’5
u€eH is a solution of (1') then vz_ Sucz in @ and u is a solution ;;@
of (1. ._;4‘
Proof of Lemma 1. Let uz+(x) = u(x) if wulx) < z, and uz+(x) =z, if o
u{x) > z,. By a theorem of Stampacchia [12], uz+ € H. On the other hand, Lfé
{u, uz+ - u)’ =£ f(u)(u-uz*) <0, B(uz+, u-uz*) = 0 and :-‘14
é ao(u-uz+) > 0. By using the uniform ellipticity of L and Poincaré's j
Inequality we get cluz - uI: < 0 for some positive constant c. So :;;
u < z, in Q. Sinilazly we can show that z_ < u in Q. Lemma 1 is ;;1
proved. ',~ﬁ
Let F(z) = I: £(t)dt for z € R and

J(u) =% lulf - [ P(u), ueaRn.
Q

1
It follows that J e C (H,R), (VJ(u),v)1 - (u,v)1 - I f(u)v u, ve H and
Q
actually the solutions of (1') are the critical points of J. The following

auxiliary result will play an important role in this paper.

Theorem 2. Let g: R+ R be a continuous function satisfying (91) - (qz).
+Q -
Suppose ) > Xi. Then there exist solutions u, € C1 a(ﬂ), (a € (0,1)), of

du du
‘1') with u <0 <u in q, 5;1 <0Oon 37 and 3;: >0 on Q. Moreover

Jiu ) € J(u) 4if u> 0 and J(u ) < J(u) 4if u< 0.

Proof of Theorem 2. Let £ (z) = Az - g(z) 1f 0 z < z, and f+(z) =0

otherwise. Let P (2) = sz*(t)dt for z @R and

1.,..2
I (u) =3 Iul1 - fnr+(u), u e H.

It is quite easy to check that J, € C‘(H,R), J*(u) + 4o as |u|1 + ®» and
J, satisfies the Palais-Smale condition ((PS) for short). Thus there exists

u €H such that J+(u+) = inf J+(u). Actually, by using (gq) and A > x1
ueH

T T D S 0 e md e




we find that J(t¢1) <0 for all t > 0 near 0. On the other hand, by
recalling that Lu = f*(u+) in  in the weak sense and using the elliptic

estimates, Sobolev embedding theorem and maximum principles we get

14a = du,
u e c () for a € (0,1), u >0 4in Q2 and P <0 on M. Moreover,

J(u+) = J*(u+) < J+(u) = J(u) if u > 0. sSimilar arguments apply with

respect to u_. This proves Theorem 2.

Our approach to get the third nontrivial solution consists in applying
the idea of the Mountain Pass Theorem (cf. Ambrosetti-Rabinowitz ([2]).
However the fact that u, are not necesgsarily minima of J poses a technical
difficulty. In order to get around it we had to use a reduction argument by
Lazer~Landesman-Meyers (13] related to the global Ljapunov-Schmidt method.
Actually we will use an improvement of that reduction argument by Castro [14].
Since (under the assumptions in Theorem 1) £(z) is Lipschitz continuous we

take Xk > 2 such that Xk <A and | f(2)-£(z2')] < Aklz-Z'l for all

k+1

z2, 2@ R. Now, if vevs= Vk and w1, "2' ews= Wk we get

(va(w‘c’) = VI(vw,), w1-v2)1 =

)

2
lwy = w15 = é (£wtw,) = £(viw,) ) (w v,

A
» (1 - -JL') fw,~w 12
A 1 721
k+1
By Castro's result mentioned earlier ([14]), Lemma 2.1), there exists
0 e co(v,w) satisfying
(1) If vevVv then J(v#0(v)) = inf J(vetw) and actually, ©0(v) is the
wew
only element of W such that (VJ(v+8(v)), w) =0 for all w e W.

(1i) Let J(v) = J(v¢8(v)) for vevV. Then J € C(V, R} and

(V3tw), v,)), = (vatwsotv)), v.), for v, v, eV,
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Moreover, u @ H is a critical point of J iff u=v ¢+ 6(v) and v ‘

is critical point of 3. So u, = v, + e(v*) where vt are critical points S
of 3. -.T4

Lemma 2. Assume g: R+ R is a locally Lipschitz continuous function

satisfying (g,) - (gz)- Suppose 1 > X1. Then there exists 6‘ > 0 such

that 361(v+) n361(v_) = ¢, B(V*) < S(v) it ve 361(v+) and 3(v_) < 3(v) “'6 1
. -

Proof of Lemma 2. From (i)-(ii) above we get for all vevV, wew ueH

AR 4 pachiaa

(8tv),w), = | £(wt(v))w.
Q

By recalling that v and w are orthogonal both with respect to Lz and

LAR ase mn aax |

H and writing P = Py and Q = Qk we find

(e(w), u), = [ Qf(v+8(v))u
Q

AEAARRAEA «+ M

that is
B(v) = Qf(veb(v)) 4in Q

in the weak sense. It follows from the elliptic estimates that
18(v) - 8(v )1 2,p ¢ clog(wo(v)) - Qf(v+ +8(v))I o

w L

for any p > 1. On the other hand, it is quite easy to check that

log(v + 8(v)) ~ Qf(v+ + 0(v+))|Lp + 0 as |v-v+|1->0

2,p

Thus we get by using the Sobolev embedding W S C‘(ﬁ). (p > 1 large

enc gh), that

T

18(v) - °(v+)|c1(§) A
and further

I{v+0(v) - (v, +08(v))] +0 as lv-v |, + O,
* @) !




du
Therefore by recalling that u >0 in Q and 3;: <0 on I we find

that v + 8(v) > 0 in Q provided Iv-v+|1 < §, with 61 >0 gamall

1
enough. In particular, 3(v*) - J(v+ + Q(V*)) < J(v + e(v)] - S(v) for all
v e BG (v+). Similar arguments apply with respect to V_. This proves

1
Lemma 2.
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3. Proof of Theorem 1.

We can assume that both v_ and v, are isolated critical points of

~

J. Let, as in Ambrosetti-Rabinowitz [2}],
B = {8 ec’((0,11,v); 8(0) = v_, B(N) = v}

c = inf sup S(B(t)).
geB 0<t<

In order to show that c € R is a critical value of J we recall that
s(v) > 4@ ag Ivl1 »o, So J satisfies the (PS) condition. Suppose by
contradiction that c¢ is not a critical value of J. It follows from the
Deformation Theorem (see e.g. Clark [15], Rabinowitz [8]) that there exist
€ >0 and o @€ Co([0,1] x V,V) such that for all vev

(1) o(0,v) = v.

(i1) E(O(t,v)) is nonincreasing in t e (0,1].

(i11) 1f J(v) € ¢ + € then J(o(1,v)) < c-c.

on the other hand, from the definition of ¢ there exists B € B such

that J(B(t)) € c +€ for t e [0,1]. Let B(s) = a(1,8(+)). We claim that
E € B. Indeed, E e co([o,tl,v) and 3(0) = g(1,v_). Further there exists
ue (0,1 such that |o(t,v_) - 0(0,v_)| < 61 for t e [0,u]l. On the other

hand, J(a(t,v_)) < Io(0,v_)) = J{v_) for t € [0,1). Thus

o(t,v_ ) =v_ for te [Ou]. If
u* = sup {u > 0; o(t,v_ ) = v_, 0< t <y}

then we find easily by repeating the above argument that u* = 1, So

o(1,v_) = v_ and §(1) = v_. Similarly we get 3(1) =v, and consequently
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E € B. But this is impossible, since by (iii) above 3(3(:)) € ¢c-¢ for
tef[o,1].

Now,

min 3(v) > 3(v+)
v8336 (v,)
1 +

since we are assuming v to be an isolated minimum of 3. Therefore

+

inf J(2(10,11)N 3Bg (v,)) > J(v,)
8eB 1
and ¢ > 3(v+). Similarly we get ¢ > 3(v_). Next we will show that ¢ < 0.

We claim that

(*) there exists a € c°([o,1], H ) such that a(0) = u_, a(1) = u,,

u_< a(t) <€ u+ and J(a(t)) <0, 0< ¢t < 1.
Let B(t) = P a(t) for t e [0,1], where a 1is given in (*). Then for all

t e [0,1]

I(8(t)) = 3(B(t) + B8(B(E)))

= inf J(B(t) + w)
wew

< J(B(t) + 0 a (t))

=J(a (t)) <0

so that c < 0. Next we will prove (*). If t € {0,1] then we get by

using (g,)
2
t

2
J(tu ) = =5 lu |} -

Q
tz 2 A2 2
=3 Iu 3t la_lg + / Gttu_)

- lu 1€ -
12 a
-2 (lu;|1 ) %Iu_lg Ny G(t:_)
a ot

< 23w <o,

-10-
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.
Similarly, J(tu+) < 0. Now, the following inequalities are consequences :.:ﬁ
of the maximum principles A
(iv) there exist b_ < 0 < b, such that o
w_<b_ ¢ <0<b .y <u, in 8
and
(v) if a < 0 ¢ b then there exists r > 0 such that “®
< uc o
a¢H u b¢3 in Q ;
1
- -
o 1
for all v @ 3Bt(0) N vs where v‘ = gpan {¢1,...,¢s} and  ¥p,...,9, are 'Qf-‘
R
the eigenfunctions corresponding to Az. SR
On the other hand, T
FAY ’ - ]
J(b_g) <0 and J(-b_u) <0 © 1@
provided b_< 0 is near enough to 0. Let L
ag(t) = =tb u_ + (1=t)b_¥,, 0< t< 1.

We will show that J(a:(t)) < 0 provided b < 0 is taken sufficiently close

to 0. Indeed, if t e (0,1] we get

» aal(e)) = %la;(t)lf - | #(ay(e))
Q
(2)
. 1, - 2 A= 2 -
=3 la (el =5 la(e)lg + s{ 6(a,(t)).

1 Now, there exists £: Q + R such that
aj(t) € £ < =tbu_ in
and

G(aj(t)) = G(=tb_u_) + (1-t)g(E)b_¥,.

Moreover,
b (¥ -u)<E<cO in @

. PV S S -
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so that £ + 0 wuniformly in Q@ as b_+ 0. We get from (2)

- 2 2 2.2 247
3(al(e)) € (£b_ )7 J(u) + £(1-t)b_ [ glu_do, + (1-t)7b] + (1-t) [ glE)b_v,
Q Q
A=A
< wb_)2au) + (1-0%B2 —+ | gte)p_v, .
Q
Let
A=A
M = sup (tzJ(u_) + (1-1:)2 -i—' .

0<t<

It follows that M < 0. On the other hand,

L{ 5.(_2_);%%‘, < '¢‘ - ll_', |¢1|~ é ség—)

and by using (g,) we get

M+ [
Q 1

provided b_ < 0 is sufficiently close to 0. Therefore J(c;(t)) <0 for

all t e (0,1} if b_ < 0 is near enough to 0. Let
ag(t) = tu, =b << 1
Then J(a;(t)) <0 for te [-b_,1]. sSimilarly, we introduce

+
01(t) - tb+u+ + (1~t)b*¢1, 0<t< 1

and

+
Go(t) = tb*, b+ <t<1

Let r >0 be as in ({i). If r > 0 is small enough we find that
N ° n = 1] L ]
3(v) <0 for ve?ds(0) NV and aar( ) N span {¢1) {b_¢'. b+¢1} where

0<b, <b and b < b' < 0. Now, take any path say a_  on 3Br(0) o Vs

0

- +
connecting b1¢ to b;¢1. Let az(t) and az(t) be the segments

1

-]2=-
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connecting b_qp' to b:sP‘ and b;.v?' to b +~p,. By joining all of these _'_-.:j
paths we get after reparametrization the path a as asserted in (*). This -if.jj'.
proves Theorem 1. ’;“
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